Technology and AML – Understanding the Potential for Innovation
by Gokul Kallambunathil, Partner, ACA Televance
Technology is an essential weapon for financial services firms in the battle against anti-money laundering (AML). The Board of Governors of the Federal Reserve System, the Federal Deposit Insurance Corporation, the Financial Crimes Enforcement Network (FinCEN), the National Credit Union Administration, and the Office of the Comptroller of the Currency (OCC) all recognize this and issued a joint statement earlier this month encouraging financial institutions to try new and innovative ways of combating AML. Three types of technology – advanced analytics, software robots, and artificial intelligence (AI) – could help make it easier to detect and prevent money laundering, as well as comply with existing regulations and follow the guidance of this joint statement.
Advanced Analytics
Advanced analytics are the most frequently used of the three technologies today. They can take the form of more sophisticated dashboards, reports, alerts, and scorecards. Examples include:
These types of approaches can improve the quality of the information that executives use when making decisions and speed up the decision-making process. Advanced analytics can also provide a more unified view of the AML program across the whole organization.
Software Robots
Called robotic process automation (RPA), software robots are capable of performing a range of tasks on existing applications. To be successful, this technology needs to be applied to repeatable, rule-based or logic-driven tasks. While the industry does talk about so-called “cognitive RPA” and “intelligent RPA”, RPA applications currently used for AML program purposes are relatively basic. Use cases currently found in firms include:
Artificial Intelligence
AI has the potential to make a tremendous difference within the AML space by introducing in the ability to identify complex vulnerabilities, threats and patterns that current processes cannot detect. It can also minimize the volume of false positives that current systems produce. Large financial institutions and Regtech firms are currently engaged in pilot AI programs that will eventually augment or replace existing systems. However, there has been limited progress in the adoption of AI technology.
Forms of AI that may be familiar include machine learning, pattern recognition, natural language processing, neural networks, and chatbots. The four types of AI are:
Deployment of even the first two basic levels of AI could result in cost and error reduction. AI can also be deployed over a large scale to streamline workflow. Its flexibility, and ability to make decisions on the fly, could potentially give it a more proactive role in AML detection and prevention.
In conclusion, in the fight against money laundering, a range of new technologies are already available to firms while the future looks bright for the ability of evolving technologies to help firms detect and combat AML.
About the Author
Gokul Kallambunathil is a Partner and manages key client relationships at ACA Telavance. He advises financial institutions on matters pertaining to regulatory compliance with a specialization in providing risk advisory services, BSA/AML/fraud and global sanctions consulting, and implementing regulatory compliance software solutions & products for financial institutions.
Gokul has over 25 years of progressive experience in Financial Services and Information Technology, and is a Certified Anti Money Laundering Specialist (“CAMS”). He has expertise in compliance with regulations such as the Bank Secrecy Act, USA Patriot Act, Know Your Customer (“KYC”) and Know Your Customer’s Customer (“KYCC”). He also has experience helping clients comply with regulations from the Office or Foreign Assets Control (“OFAC”).